Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical investigation on weak Galerkin finite elements (2004.12483v1)

Published 26 Apr 2020 in math.NA and cs.NA

Abstract: The weak Galerkin (WG) finite element method is an effective and flexible general numerical technique for solving partial differential equations. The novel idea of weak Galerkin finite element methods is on the use of weak functions and their weak derivatives defined as distributions. Weak functions and weak derivatives can be approximated by polynomials with various degrees. Different combination of polynomial spaces generates different weak Galerkin finite elements. The purpose of this paper is to study stability, convergence and supercloseness of different WG elements by providing many numerical experiments recorded in 31 tables. These tables serve two purposes. First it provides a detail guide of the performance of different WG elements. Second, the information in the tables opens new research territory why some WG elements outperform others.

Citations (10)

Summary

We haven't generated a summary for this paper yet.