Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis & Shortcomings of E-Recruitment Systems: Towards a Semantics-based Approach Addressing Knowledge Incompleteness and Limited Domain Coverage (2004.12034v1)

Published 25 Apr 2020 in cs.CY and cs.IR

Abstract: The rapid development of the Internet has led to introducing new methods for e-recruitment and human resources management. These methods aim to systematically address the limitations of conventional recruitment procedures through incorporating natural language processing tools and semantics-based methods. In this context, for a given job post, applicant resumes (usually uploaded as free-text unstructured documents in different formats such as .pdf, .doc, or .rtf) are matched/screened out using the conventional keyword-based model enriched by additional resources such as occupational categories and semantics-based techniques. Employing these techniques has proved to be effective in reducing the cost, time, and efforts required in traditional recruitment and candidate selection methods. However, the skill gap, i.e. the propensity to precisely detect and extract relevant skills in applicant resumes and job posts, and the hidden semantic dimensions encoded in applicant resumes still form a major obstacle for e-recruitment systems. This is due to the fact that resources exploited by current e-recruitment systems are obtained from generic domain-independent sources, therefore resulting in knowledge incompleteness and the lack of domain coverage. In this paper, we review state-of-the-art e-recruitment approaches and highlight recent advancements in this domain. An e-recruitment framework addressing current shortcomings through the use of multiple cooperative semantic resources, feature extraction techniques and skill relatedness measures is detailed. An instantiation of the proposed framework is proposed and an experimental validation using a real-world recruitment dataset from two employment portals demonstrates the effectiveness of the proposed approach.

Citations (26)

Summary

We haven't generated a summary for this paper yet.