Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixing times and cutoffs in open quadratic fermionic systems (2004.11788v2)

Published 24 Apr 2020 in cond-mat.stat-mech and quant-ph

Abstract: In classical probability theory, the term "cutoff" describes the property of some Markov chains to jump from (close to) their initial configuration to (close to) completely mixed in a very narrow window of time. We investigate how coherent quantum evolution affects the mixing properties in two fermionic quantum models (the "gain/loss" and "topological" models), whose time evolution is governed by a Lindblad equation quadratic in fermionic operators, allowing for a straightforward exact solution. We check that the phenomenon of cutoff extends to the quantum case and examine with some care how the mixing properties depend on the initial state, drawing different regimes of our models with qualitatively different behaviour. In the topological case, we further show how the mixing properties are affected by the presence of a long-lived edge zero mode when taking open boundary conditions.

Summary

We haven't generated a summary for this paper yet.