Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust subgaussian estimation with VC-dimension (2004.11734v3)

Published 24 Apr 2020 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Median-of-means (MOM) based procedures provide non-asymptotic and strong deviation bounds even when data are heavy-tailed and/or corrupted. This work proposes a new general way to bound the excess risk for MOM estimators. The core technique is the use of VC-dimension (instead of Rademacher complexity) to measure the statistical complexity. In particular, this allows to give the first robust estimators for sparse estimation which achieves the so-called subgaussian rate only assuming a finite second moment for the uncorrupted data. By comparison, previous works using Rademacher complexities required a number of finite moments that grows logarithmically with the dimension. With this technique, we derive new robust sugaussian bounds for mean estimation in any norm. We also derive a new robust estimator for covariance estimation that is the first to achieve subgaussian bounds without $L_4-L_2$ norm equivalence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jules Depersin (8 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.