Papers
Topics
Authors
Recent
2000 character limit reached

Constrained Neural Ordinary Differential Equations with Stability Guarantees

Published 22 Apr 2020 in eess.SY, cs.LG, cs.NE, and cs.SY | (2004.10883v1)

Abstract: Differential equations are frequently used in engineering domains, such as modeling and control of industrial systems, where safety and performance guarantees are of paramount importance. Traditional physics-based modeling approaches require domain expertise and are often difficult to tune or adapt to new systems. In this paper, we show how to model discrete ordinary differential equations (ODE) with algebraic nonlinearities as deep neural networks with varying degrees of prior knowledge. We derive the stability guarantees of the network layers based on the implicit constraints imposed on the weight's eigenvalues. Moreover, we show how to use barrier methods to generically handle additional inequality constraints. We demonstrate the prediction accuracy of learned neural ODEs evaluated on open-loop simulations compared to ground truth dynamics with bi-linear terms.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.