Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Neural Ordinary Differential Equations with Stability Guarantees (2004.10883v1)

Published 22 Apr 2020 in eess.SY, cs.LG, cs.NE, and cs.SY

Abstract: Differential equations are frequently used in engineering domains, such as modeling and control of industrial systems, where safety and performance guarantees are of paramount importance. Traditional physics-based modeling approaches require domain expertise and are often difficult to tune or adapt to new systems. In this paper, we show how to model discrete ordinary differential equations (ODE) with algebraic nonlinearities as deep neural networks with varying degrees of prior knowledge. We derive the stability guarantees of the network layers based on the implicit constraints imposed on the weight's eigenvalues. Moreover, we show how to use barrier methods to generically handle additional inequality constraints. We demonstrate the prediction accuracy of learned neural ODEs evaluated on open-loop simulations compared to ground truth dynamics with bi-linear terms.

Citations (23)

Summary

We haven't generated a summary for this paper yet.