Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the Reliability of Visual Explanations of Deep Models with Adversarial Perturbations (2004.10824v1)

Published 22 Apr 2020 in cs.LG and stat.ML

Abstract: The interest in complex deep neural networks for computer vision applications is increasing. This leads to the need for improving the interpretable capabilities of these models. Recent explanation methods present visualizations of the relevance of pixels from input images, thus enabling the direct interpretation of properties of the input that lead to a specific output. These methods produce maps of pixel importance, which are commonly evaluated by visual inspection. This means that the effectiveness of an explanation method is assessed based on human expectation instead of actual feature importance. Thus, in this work we propose an objective measure to evaluate the reliability of explanations of deep models. Specifically, our approach is based on changes in the network's outcome resulting from the perturbation of input images in an adversarial way. We present a comparison between widely-known explanation methods using our proposed approach. Finally, we also propose a straightforward application of our approach to clean relevance maps, creating more interpretable maps without any loss in essential explanation (as per our proposed measure).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dan Valle (1 paper)
  2. Tiago Pimentel (55 papers)
  3. Adriano Veloso (9 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.