Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Fast convolutional neural networks for identifying long-lived particles in a high-granularity calorimeter (2004.10744v1)

Published 22 Apr 2020 in hep-ex

Abstract: We present a first proof of concept to directly use neural network based pattern recognition to trigger on distinct calorimeter signatures from displaced particles, such as those that arise from the decays of exotic long-lived particles. The study is performed for a high granularity forward calorimeter similar to the planned high granularity calorimeter for the high luminosity upgrade of the CMS detector at the CERN Large Hadron Collider. Without assuming a particular model that predicts long-lived particles, we show that a simple convolutional neural network, that could in principle be deployed on dedicated fast hardware, can efficiently identify showers from displaced particles down to low energies while providing a low trigger rate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.