Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Efficient Hazard Identification in the Concept Phase of Driverless Vehicle Development (2004.10501v2)

Published 22 Apr 2020 in eess.SY and cs.SY

Abstract: The complex functional structure of driverless vehicles induces a multitude of potential malfunctions. Established approaches for a systematic hazard identification generate individual potentially hazardous scenarios for each identified malfunction. This leads to inefficiencies in a purely expert-based hazard analysis process, as each of the many scenarios has to be examined individually. In this contribution, we propose an adaptation of the strategy for hazard identification for the development of automated vehicles. Instead of focusing on malfunctions, we base our process on deviations from desired vehicle behavior in selected operational scenarios analyzed in the concept phase. By evaluating externally observable deviations from a desired behavior, we encapsulate individual malfunctions and reduce the amount of generated potentially hazardous scenarios. After introducing our hazard identification strategy, we illustrate its application on one of the operational scenarios used in the research project UNICAR$agil$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.