Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilizing Quasi-Time-Optimal Nonlinear Model Predictive Control with Variable Discretization (2004.09561v1)

Published 20 Apr 2020 in eess.SY, cs.SY, and math.OC

Abstract: This paper deals with the development and analysis of novel time-optimal point-to-point model predictive control concepts for nonlinear systems. Recent approaches in the literature apply a time transformation, however, which do not maintain recursive feasibility for piecewise constant control parameterization. The key idea in this paper is to introduce uniform grids with variable discretization. A shrinking-horizon grid adaptation scheme ensures convergence to a specific region around the target state and recursive feasibility. The size of the region is configurable by design parameters. This facilitates the systematic dual-mode design for quasi-time-optimal control to restore asymptotic stability and establish a smooth stabilization. Two nonlinear program formulations with different sparsity patterns are introduced to realize and implement the underlying optimal control problem. For a class of numerical integration schemes, even nominal asymptotic stability and true time-optimality are achieved without dual-mode. A comparative analysis as well as experimental results demonstrate the effectiveness of the proposed techniques.

Citations (5)

Summary

We haven't generated a summary for this paper yet.