Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

General solution of the exceptional Hermite differential equation and its minimal surface representation (2004.09250v2)

Published 20 Apr 2020 in math-ph, math.CA, and math.MP

Abstract: The main aim of this paper is the study of the general solution of the exceptional Hermite differential equation with fixed partition $\lambda = (1)$ and the construction of minimal surfaces associated with this solution. We derive a linear second-order ordinary differential equation associated with a specific family of exceptional polynomials of codimension two. We show that these polynomials can be expressed in terms of classical Hermite polynomials. Based on this fact, we demonstrate that there exists a link between the norm of an exceptional Hermite polynomial and the gap sequence arising from the partition used to construct this polynomial. We find the general analytic solution of the exceptional Hermite differential equation which has no gap in its spectrum. We show that the spectrum is complemented by non-polynomial solutions. We present an implementation of the obtained results for the surfaces expressed in terms of the general solution making use of the classical Enneper-Weierstrass formula for the immersion in the Euclidean space $\mathbb{E}3$, leading to minimal surfaces. Three-dimensional displays of these surfaces are presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.