Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence analysis of direct minimization and self-consistent iterations (2004.09088v2)

Published 20 Apr 2020 in math.NA, cond-mat.mtrl-sci, and cs.NA

Abstract: This article is concerned with the numerical solution of subspace optimization problems, consisting of minimizing a smooth functional over the set of orthogonal projectors of fixed rank. Such problems are encountered in particular in electronic structure calculation (Hartree-Fock and Kohn-Sham Density Functional Theory -DFT- models). We compare from a numerical analysis perspective two simple representatives, the damped self-consistent field (SCF) iterations and the gradient descent algorithm, of the two classes of methods competing in the field: SCF and direct minimization methods. We derive asymptotic rates of convergence for these algorithms and analyze their dependence on the spectral gap and other properties of the problem. Our theoretical results are complemented by numerical simulations on a variety of examples, from toy models with tunable parameters to realistic Kohn-Sham computations. We also provide an example of chaotic behavior of the simple SCF iterations for a nonquadratic functional.

Citations (37)

Summary

We haven't generated a summary for this paper yet.