Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Color Image Segmentation using Adaptive Particle Swarm Optimization and Fuzzy C-means (2004.08547v1)

Published 18 Apr 2020 in cs.CV

Abstract: Segmentation partitions an image into different regions containing pixels with similar attributes. A standard non-contextual variant of Fuzzy C-means clustering algorithm (FCM), considering its simplicity is generally used in image segmentation. Using FCM has its disadvantages like it is dependent on the initial guess of the number of clusters and highly sensitive to noise. Satisfactory visual segments cannot be obtained using FCM. Particle Swarm Optimization (PSO) belongs to the class of evolutionary algorithms and has good convergence speed and fewer parameters compared to Genetic Algorithms (GAs). An optimized version of PSO can be combined with FCM to act as a proper initializer for the algorithm thereby reducing its sensitivity to initial guess. A hybrid PSO algorithm named Adaptive Particle Swarm Optimization (APSO) which improves in the calculation of various hyper parameters like inertia weight, learning factors over standard PSO, using insights from swarm behaviour, leading to improvement in cluster quality can be used. This paper presents a new image segmentation algorithm called Adaptive Particle Swarm Optimization and Fuzzy C-means Clustering Algorithm (APSOF), which is based on Adaptive Particle Swarm Optimization (APSO) and Fuzzy C-means clustering. Experimental results show that APSOF algorithm has edge over FCM in correctly identifying the optimum cluster centers, there by leading to accurate classification of the image pixels. Hence, APSOF algorithm has superior performance in comparison with classic Particle Swarm Optimization (PSO) and Fuzzy C-means clustering algorithm (FCM) for image segmentation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.