Structures of (supersymmetric) classical W-algebras
Abstract: In the first part of this paper, we discuss the classical W-algebra $\mathcal{W}(\mathfrak{g}, F)$ associated with a Lie superalgebra $\mathfrak{g}$ and the nilpotent element $F$ in an $\mathfrak{sl}_2$-triple. We find a generating set of $\mathcal{W}(\mathfrak{g}, F)$ and compute the Poisson brackets between them. In the second part, which is the main part of the paper, we discuss supersymmetric classical W-algebras. We introduce two different constructions of a supersymmetric classical W-algebra $\mathcal{W}(\mathfrak{g}, f)$ associated with a Lie superalgebra $\mathfrak{g}$ and an odd nilpotent element $f$ in a subalgebra isomorphic to $\mathfrak{osp}(1|2)$. The first construction is via the SUSY classical BRST complex and the second is via the SUSY Drinfeld-Sokolov Hamiltonian reduction. We show that these two methods give rise to isomorphic SUSY Poisson vertex algebras. As a supersymmetric analogue of the first part, we compute explicit generators and Poisson brackets between the generators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.