Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structures of (supersymmetric) classical W-algebras (2004.07958v1)

Published 6 Apr 2020 in math.RT, math-ph, and math.MP

Abstract: In the first part of this paper, we discuss the classical W-algebra $\mathcal{W}(\mathfrak{g}, F)$ associated with a Lie superalgebra $\mathfrak{g}$ and the nilpotent element $F$ in an $\mathfrak{sl}_2$-triple. We find a generating set of $\mathcal{W}(\mathfrak{g}, F)$ and compute the Poisson brackets between them. In the second part, which is the main part of the paper, we discuss supersymmetric classical W-algebras. We introduce two different constructions of a supersymmetric classical W-algebra $\mathcal{W}(\mathfrak{g}, f)$ associated with a Lie superalgebra $\mathfrak{g}$ and an odd nilpotent element $f$ in a subalgebra isomorphic to $\mathfrak{osp}(1|2)$. The first construction is via the SUSY classical BRST complex and the second is via the SUSY Drinfeld-Sokolov Hamiltonian reduction. We show that these two methods give rise to isomorphic SUSY Poisson vertex algebras. As a supersymmetric analogue of the first part, we compute explicit generators and Poisson brackets between the generators.

Summary

We haven't generated a summary for this paper yet.