Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covid Notions: Towards Formal Definitions -- and Documented Understanding -- of Privacy Goals and Claimed Protection in Proximity-Tracing Services (2004.07723v1)

Published 16 Apr 2020 in cs.CR

Abstract: The recent SARS-CoV-2 pandemic gave rise to management approaches using mobile apps for contact tracing. The corresponding apps track individuals and their interactions, to facilitate alerting users of potential infections well before they become infectious themselves. Naive implementation obviously jeopardizes the privacy of health conditions, location, activities, and social interaction of its users. A number of protocol designs for colocation tracking have already been developed, most of which claim to function in a privacy preserving manner. However, despite claims such as "GDPR compliance", "anonymity", "pseudonymity" or other forms of "privacy", the authors of these designs usually neglect to precisely define what they (aim to) protect. We make a first step towards formally defining the privacy notions of proximity tracing services, especially with regards to the health, (co-)location, and social interaction of their users. We also give a high-level intuition of which protection the most prominent proposals can and cannot achieve. This initial overview indicates that all proposals include some centralized services, and none protects identity and (co-)locations of infected users perfectly from both other users and the service provider.

Citations (25)

Summary

We haven't generated a summary for this paper yet.