Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel pressure-free two-fluid model for one-dimensional incompressible multiphase flow (2004.06987v2)

Published 15 Apr 2020 in physics.flu-dyn, cs.NA, and math.NA

Abstract: A novel pressure-free two-fluid model formulation is proposed for the simulation of one-dimensional incompressible multiphase flow in pipelines and channels. The model is obtained by simultaneously eliminating the volume constraint and the pressure from the widely used two-fluid model (TFM). The resulting `pressure-free two-fluid model' (PF-TFM) has a number of attractive features: (i) it features four evolution equations (without additional constraints) that can be solved very quickly with explicit time integration methods; (ii) it keeps the conservation properties of the original two-fluid model, and therefore the correct shock relations in case of discontinuities; (iii) its solutions satisfy the two TFM constraints exactly: the volume constraint and the volumetric flow constraint; (iv) it offers a convenient form to analytically analyse the equation system, since the constraint has been removed. A staggered-grid spatial discretization and an explicit Runge-Kutta time integration method are proposed, which keep the constraints exactly satisfied when numerically solving the PF-TFM. Furthermore, for the case of strongly imposed boundary conditions, a novel adapted Runge-Kutta formulation is proposed that keeps the volumetric flow exact in time while retaining high order accuracy. Several test cases confirm the theoretical properties and show the efficiency of the new pressure-free model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.