Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploration of Indoor Environments Predicting the Layout of Partially Observed Rooms (2004.06967v1)

Published 15 Apr 2020 in cs.RO and cs.CV

Abstract: We consider exploration tasks in which an autonomous mobile robot incrementally builds maps of initially unknown indoor environments. In such tasks, the robot makes a sequence of decisions on where to move next that, usually, are based on knowledge about the observed parts of the environment. In this paper, we present an approach that exploits a prediction of the geometric structure of the unknown parts of an environment to improve exploration performance. In particular, we leverage an existing method that reconstructs the layout of an environment starting from a partial grid map and that predicts the shape of partially observed rooms on the basis of geometric features representing the regularities of the indoor environment. Then, we originally employ the predicted layout to estimate the amount of new area the robot would observe from candidate locations in order to inform the selection of the next best location and to early stop the exploration when no further relevant area is expected to be discovered. Experimental activities show that our approach is able to effectively predict the layout of partially observed rooms and to use such knowledge to speed up the exploration.

Citations (4)

Summary

We haven't generated a summary for this paper yet.