Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric mixtures of pusher and puller microswimmers behave as noninteracting suspensions (2004.06938v2)

Published 15 Apr 2020 in cond-mat.soft, cond-mat.stat-mech, physics.bio-ph, and physics.flu-dyn

Abstract: Suspensions of rear- and front-actuated microswimmers immersed in a fluid, known respectively as pushers'' andpullers'', display qualitatively different collective behaviours: beyond a characteristic density, pusher suspensions exhibit a hydrodynamic instability leading to collective motion known as active turbulence, a phenomenon which is absent for pullers. In this Letter, we describe the collective dynamics of a binary pusher--puller mixture using kinetic theory and large-scale particle-resolved simulations. We derive and verify an instability criterion, showing that the critical density for active turbulence moves to higher values as the fraction $\chi$ of pullers is increased and disappears for $\chi \geq 0.5$. We then show analytically and numerically that the two-point hydrodynamic correlations of the 1:1 mixture are equal to those of a suspension of noninteracting swimmers. Strikingly, our numerical analysis furthermore shows that the full probability distribution of the fluid velocity fluctuations collapses onto the one of a noninteracting system at the same density, where swimmer--swimmer correlations are strictly absent. Our results thus indicate that the fluid velocity fluctuations in 1:1 pusher--puller mixtures are exactly equal to those of the corresponding noninteracting suspension at any density, a surprising cancellation with no counterpart in equilibrium long-range interacting systems.

Summary

We haven't generated a summary for this paper yet.