Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Mixtures of Spherical Gaussians via Fourier Analysis (2004.05813v2)

Published 13 Apr 2020 in cs.DS and cs.LG

Abstract: Suppose that we are given independent, identically distributed samples $x_l$ from a mixture $\mu$ of no more than $k$ of $d$-dimensional spherical gaussian distributions $\mu_i$ with variance $1$, such that the minimum $\ell_2$ distance between two distinct centers $y_l$ and $y_j$ is greater than $\sqrt{d} \Delta$ for some $c \leq \Delta $, where $c\in (0,1)$ is a small positive universal constant. We develop a randomized algorithm that learns the centers $y_l$ of the gaussians, to within an $\ell_2$ distance of $\delta < \frac{\Delta\sqrt{d}}{2}$ and the weights $w_l$ to within $cw_{min}$ with probability greater than $1 - \exp(-k/c)$. The number of samples and the computational time is bounded above by $poly(k, d, \frac{1}{\delta})$. Such a bound on the sample and computational complexity was previously unknown when $\omega(1) \leq d \leq O(\log k)$. When $d = O(1)$, this follows from work of Regev and Vijayaraghavan. These authors also show that the sample complexity of learning a random mixture of gaussians in a ball of radius $\Theta(\sqrt{d})$ in $d$ dimensions, when $d$ is $\Theta( \log k)$ is at least $poly(k, \frac{1}{\delta})$, showing that our result is tight in this case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.