Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Optimal Learning for Sequential Decisions in Laboratory Experimentation (2004.05417v2)

Published 11 Apr 2020 in cs.LG and cs.AI

Abstract: The process of discovery in the physical, biological and medical sciences can be painstakingly slow. Most experiments fail, and the time from initiation of research until a new advance reaches commercial production can span 20 years. This tutorial is aimed to provide experimental scientists with a foundation in the science of making decisions. Using numerical examples drawn from the experiences of the authors, the article describes the fundamental elements of any experimental learning problem. It emphasizes the important role of belief models, which include not only the best estimate of relationships provided by prior research, previous experiments and scientific expertise, but also the uncertainty in these relationships. We introduce the concept of a learning policy, and review the major categories of policies. We then introduce a policy, known as the knowledge gradient, that maximizes the value of information from each experiment. We bring out the importance of reducing uncertainty, and illustrate this process for different belief models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.