Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convex Parameterization of Robust Recurrent Neural Networks (2004.05290v2)

Published 11 Apr 2020 in cs.LG, cs.SY, eess.SY, math.OC, and stat.ML

Abstract: Recurrent neural networks (RNNs) are a class of nonlinear dynamical systems often used to model sequence-to-sequence maps. RNNs have excellent expressive power but lack the stability or robustness guarantees that are necessary for many applications. In this paper, we formulate convex sets of RNNs with stability and robustness guarantees. The guarantees are derived using incremental quadratic constraints and can ensure global exponential stability of all solutions, and bounds on incremental $ \ell_2 $ gain (the Lipschitz constant of the learned sequence-to-sequence mapping). Using an implicit model structure, we construct a parametrization of RNNs that is jointly convex in the model parameters and stability certificate. We prove that this model structure includes all previously-proposed convex sets of stable RNNs as special cases, and also includes all stable linear dynamical systems. We illustrate the utility of the proposed model class in the context of non-linear system identification.

Citations (4)

Summary

We haven't generated a summary for this paper yet.