Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Target Emotional Voice Conversion With Neural Vocoders (2004.03782v1)

Published 8 Apr 2020 in eess.AS

Abstract: Emotional voice conversion (EVC) is one way to generate expressive synthetic speech. Previous approaches mainly focused on modeling one-to-one mapping, i.e., conversion from one emotional state to another emotional state, with Mel-cepstral vocoders. In this paper, we investigate building a multi-target EVC (MTEVC) architecture, which combines a deep bidirectional long-short term memory (DBLSTM)-based conversion model and a neural vocoder. Phonetic posteriorgrams (PPGs) containing rich linguistic information are incorporated into the conversion model as auxiliary input features, which boost the conversion performance. To leverage the advantages of the newly emerged neural vocoders, we investigate the conditional WaveNet and flow-based WaveNet (FloWaveNet) as speech generators. The vocoders take in additional speaker information and emotion information as auxiliary features and are trained with a multi-speaker and multi-emotion speech corpus. Objective metrics and subjective evaluation of the experimental results verify the efficacy of the proposed MTEVC architecture for EVC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Songxiang Liu (28 papers)
  2. Yuewen Cao (9 papers)
  3. Helen Meng (204 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.