Papers
Topics
Authors
Recent
2000 character limit reached

Strong Invariance Using Control Barrier Functions: A Clarke Tangent Cone Approach

Published 7 Apr 2020 in math.OC | (2004.03733v1)

Abstract: Many control applications require that a system be constrained to a particular set of states, often termed as safe set. A practical and flexible method for rendering safe sets forward-invariant involves computing control input using Control Barrier Functions and Quadratic Programming methods. Many prior results however require the resulting control input to be continuous, which requires strong assumptions or can be difficult to demonstrate theoretically. In this paper we use differential inclusion methods to show that simultaneously rendering multiple sets invariant can be accomplished using a discontinuous control input. We present an optimization formulation which computes such control inputs and which can be posed in multiple forms, including a feasibility problem, a linear program, or a quadratic program. In addition, we discuss conditions under which the optimization problem is feasible and show that any feasible solution of the considered optimization problem which is measurable renders the multiple safe sets forward invariant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.