Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained Named Entity Typing over Distantly Supervised Data Based on Refined Representations (2004.03554v1)

Published 7 Apr 2020 in cs.CL

Abstract: Fine-Grained Named Entity Typing (FG-NET) is a key component in NLP. It aims at classifying an entity mention into a wide range of entity types. Due to a large number of entity types, distant supervision is used to collect training data for this task, which noisily assigns type labels to entity mentions irrespective of the context. In order to alleviate the noisy labels, existing approaches on FGNET analyze the entity mentions entirely independent of each other and assign type labels solely based on mention sentence-specific context. This is inadequate for highly overlapping and noisy type labels as it hinders information passing across sentence boundaries. For this, we propose an edge-weighted attentive graph convolution network that refines the noisy mention representations by attending over corpus-level contextual clues prior to the end classification. Experimental evaluation shows that the proposed model outperforms the existing research by a relative score of upto 10.2% and 8.3% for macro f1 and micro f1 respectively.

Citations (24)

Summary

We haven't generated a summary for this paper yet.