Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Robustness of QA Models to Challenge Sets with Variational Question-Answer Pair Generation (2004.03238v2)

Published 7 Apr 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Question answering (QA) models for reading comprehension have achieved human-level accuracy on in-distribution test sets. However, they have been demonstrated to lack robustness to challenge sets, whose distribution is different from that of training sets. Existing data augmentation methods mitigate this problem by simply augmenting training sets with synthetic examples sampled from the same distribution as the challenge sets. However, these methods assume that the distribution of a challenge set is known a priori, making them less applicable to unseen challenge sets. In this study, we focus on question-answer pair generation (QAG) to mitigate this problem. While most existing QAG methods aim to improve the quality of synthetic examples, we conjecture that diversity-promoting QAG can mitigate the sparsity of training sets and lead to better robustness. We present a variational QAG model that generates multiple diverse QA pairs from a paragraph. Our experiments show that our method can improve the accuracy of 12 challenge sets, as well as the in-distribution accuracy. Our code and data are available at https://github.com/KazutoshiShinoda/VQAG.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kazutoshi Shinoda (9 papers)
  2. Saku Sugawara (29 papers)
  3. Akiko Aizawa (74 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.