Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding polynomial roots by dynamical systems -- a case study (2004.03217v1)

Published 7 Apr 2020 in math.NA and cs.NA

Abstract: We investigate two well known dynamical systems that are designed to find roots of univariate polynomials by iteration: the methods known by Newton and by Ehrlich-Aberth. Both are known to have found all roots of high degree polynomials with good complexity. Our goal is to determine in which cases which of the two algorithms is more efficient. We come to the conclusion that Newton is faster when the polynomials are given by recursion so they can be evaluated in logarithmic time with respect to the degree, or when all the roots are all near the boundary of their convex hull. Conversely, Ehrlich-Aberth has the advantage when no fast evaluation of the polynomials is available, and when roots are in the interior of the convex hull of other roots.

Citations (7)

Summary

We haven't generated a summary for this paper yet.