Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing count data using a time series model with an exponentially decaying covariance structure (2004.03130v2)

Published 7 Apr 2020 in stat.ME and stat.AP

Abstract: Count data appears in various disciplines. In this work, a new method to analyze time series count data has been proposed. The method assumes exponentially decaying covariance structure, a special class of the Mat\'ern covariance function, for the latent variable in a Poisson regression model. It is implemented in a Bayesian framework, with the help of Gibbs sampling and ARMS sampling techniques. The proposed approach provides reliable estimates for the covariate effects and estimates the extent of variability explained by the temporally dependent process and the white noise process. The method is flexible, allows irregular spaced data, and can be extended naturally to bigger datasets. The Bayesian implementation helps us to compute the posterior predictive distribution and hence is more appropriate and attractive for count data forecasting problems. Two real life applications of different flavors are included in the paper. These two examples and a short simulation study establish that the proposed approach has good inferential and predictive abilities and performs better than the other competing models.

Summary

We haven't generated a summary for this paper yet.