Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A posteriori error estimates for a distributed optimal control problem of the stationary Navier-Stokes equations (2004.03086v2)

Published 7 Apr 2020 in math.NA, cs.NA, and math.OC

Abstract: In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we propose and analyze a posteriori error estimators for an optimal control problem involving the stationary Navier--Stokes equations; control constraints are also considered. We devise two strategies of discretization: a semi discrete scheme where the control variable is not discretized -- the so-called variational discrezation approach -- and a fully discrete scheme where the control is discretized with piecewise quadratic functions. For each solution solution technique, we design an a posteriori error estimator that can be decomposed as the sum of contributions related to the discretization of the state and adjoint equations and, additionally, the discretization of the control variable for when the fully discrete scheme is considered. We prove that the devised error estimators are reliable and also explore local efficiency estimates. Numerical experiments reveal a competitive performance of adaptive loops based on the devised a posteriori error estimators.

Citations (3)

Summary

We haven't generated a summary for this paper yet.