Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A pro-$p$ group with full normal Hausdorff spectra (2004.02846v2)

Published 6 Apr 2020 in math.GR

Abstract: For each odd prime $p$, we produce a $2$-generated pro-$p$ group $G$ whose normal Hausdorff spectra [ \mathrm{hspec}{\trianglelefteq}{\mathcal{S}}(G) = { \mathrm{hdim}{G}{\mathcal{S}}(H)\mid H\trianglelefteq_\mathrm{c} G } ] with respect to five standard filtration series $\mathcal{S}$ - namely the lower $p$-series, the dimension subgroup series, the $p$-power series, the iterated $p$-power series and the Frattini series - are all equal to the full unit interval $[0,1]$. Here $\mathrm{hdim}_G{\mathcal{S}} \colon { X\mid X \subseteq G } \to[0,1]$ denotes the Hausdorff dimension function associated to the natural translation-invariant metric induced by the filtration series $\mathcal{S}$.

Summary

We haven't generated a summary for this paper yet.