Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Tandem Duplication Distance Problem is hard over bounded alphabets (2004.02338v2)

Published 5 Apr 2020 in cs.CC, cs.DS, and cs.FL

Abstract: A tandem duplication denotes the process of inserting a copy of a segment of DNA adjacent to its original position. More formally, a tandem duplication can be thought of as an operation that converts a string $S = AXB$ into a string $T = AXXB.$ As they appear to be involved in genetic disorders, tandem duplications are widely studied in computational biology. Also, tandem duplication mechanisms have been recently studied in different contexts, from formal languages, to information theory, to error-correcting codes for DNA storage systems. The problem of determining the complexity of computing the tandem duplication distance between two given strings was proposed by [Leupold et al., 2004] and, very recently, it was shown to be NP-hard for the case of unbounded alphabets [Lafond et al., STACS2020]. In this paper, we significantly improve this result and show that the tandem duplication distance problem is NP-hard already for the case of strings over an alphabet of size $\leq 5.$ We also study some special classes of strings were it is possible to give linear time solutions to the existence problem: given strings $S$ and $T$ over the same alphabet, decide whether there exists a sequence of duplications converting $S$ into $T$. A polynomial time algorithm that solves the existence problem was only known for the case of the binary alphabet.

Summary

We haven't generated a summary for this paper yet.