Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling, Analysis, and Optimization of Grant-Free NOMA in Massive MTC via Stochastic Geometry (2004.02171v1)

Published 5 Apr 2020 in cs.IT, eess.SP, and math.IT

Abstract: Massive machine-type communications (mMTC) is a crucial scenario to support booming Internet of Things (IoTs) applications. In mMTC, although a large number of devices are registered to an access point (AP), very few of them are active with uplink short packet transmission at the same time, which requires novel design of protocols and receivers to enable efficient data transmission and accurate multi-user detection (MUD). Aiming at this problem, grant-free non-orthogonal multiple access (GF-NOMA) protocol is proposed. In GF-NOMA, active devices can directly transmit their preambles and data symbols altogether within one time frame, without grant from the AP. Compressive sensing (CS)-based receivers are adopted for non-orthogonal preambles (NOP)-based MUD, and successive interference cancellation is exploited to decode the superimposed data signals. In this paper, we model, analyze, and optimize the CS-based GF-MONA mMTC system via stochastic geometry (SG), from an aspect of network deployment. Based on the SG network model, we first analyze the success probability as well as the channel estimation error of the CS-based MUD in the preamble phase and then analyze the average aggregate data rate in the data phase. As IoT applications highly demands low energy consumption, low infrastructure cost, and flexible deployment, we optimize the energy efficiency and AP coverage efficiency of GF-NOMA via numerical methods. The validity of our analysis is verified via Monte Carlo simulations. Simulation results also show that CS-based GF-NOMA with NOP yields better MUD and data rate performances than contention-based GF-NOMA with orthogonal preambles and CS-based grant-free orthogonal multiple access.

Citations (32)

Summary

We haven't generated a summary for this paper yet.