Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arbitrary Scale Super-Resolution for Brain MRI Images (2004.02086v2)

Published 5 Apr 2020 in eess.IV, cs.CV, and cs.LG

Abstract: Recent attempts at Super-Resolution for medical images used deep learning techniques such as Generative Adversarial Networks (GANs) to achieve perceptually realistic single image Super-Resolution. Yet, they are constrained by their inability to generalise to different scale factors. This involves high storage and energy costs as every integer scale factor involves a separate neural network. A paper has proposed a novel meta-learning technique that uses a Weight Prediction Network to enable Super-Resolution on arbitrary scale factors using only a single neural network. In this paper, we propose a new network that combines that technique with SRGAN, a state-of-the-art GAN-based architecture, to achieve arbitrary scale, high fidelity Super-Resolution for medical images. By using this network to perform arbitrary scale magnifications on images from the Multimodal Brain Tumor Segmentation Challenge (BraTS) dataset, we demonstrate that it is able to outperform traditional interpolation methods by up to 20$\%$ on SSIM scores whilst retaining generalisability on brain MRI images. We show that performance across scales is not compromised, and that it is able to achieve competitive results with other state-of-the-art methods such as EDSR whilst being fifty times smaller than them. Combining efficiency, performance, and generalisability, this can hopefully become a new foundation for tackling Super-Resolution on medical images. Check out the webapp here: https://metasrgan.herokuapp.com/ Check out the github tutorial here: https://github.com/pancakewaffles/metasrgan-tutorial

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chuan Tan (3 papers)
  2. Jin Zhu (35 papers)
  3. Pietro Lio' (17 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.