Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging the gap between graphs and networks (2004.01467v1)

Published 3 Apr 2020 in physics.soc-ph and cs.SI

Abstract: Network science has become a powerful tool to describe the structure and dynamics of real-world complex physical, biological, social, and technological systems. Largely built on empirical observations to tackle heterogeneous, temporal, and adaptive patterns of interactions, its intuitive and flexible nature has contributed to the popularity of the field. With pioneering work on the evolution of random graphs, graph theory is often cited as the mathematical foundation of network science. Despite this narrative, the two research communities are still largely disconnected. In this Commentary we discuss the need for further cross-pollination between fields -- bridging the gap between graphs and networks -- and how network science can benefit from such influence. A more mathematical network science may clarify the role of randomness in modeling, hint at underlying laws of behavior, and predict yet unobserved complex networked phenomena in nature.

Citations (16)

Summary

We haven't generated a summary for this paper yet.