Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Relaxing the Gaussian assumption in Shrinkage and SURE in high dimension (2004.01378v3)

Published 3 Apr 2020 in math.ST and stat.TH

Abstract: Shrinkage estimation is a fundamental tool of modern statistics, pioneered by Charles Stein upon his discovery of the famous paradox involving the multivariate Gaussian. A large portion of the subsequent literature only considers the efficiency of shrinkage, and that of an associated procedure known as Stein's Unbiased Risk Estimate, or SURE, in the Gaussian setting of that original work. We investigate what extensions to the domain of validity of shrinkage and SURE can be made away from the Gaussian through the use of tools developed in the probabilistic area now known as Stein's method. We show that shrinkage is efficient away from the Gaussian under very mild conditions on the distribution of the noise. SURE is also proved to be adaptive under similar assumptions, and in particular in a way that retains the classical asymptotics of Pinsker's theorem. Notably, shrinkage and SURE are shown to be efficient under mild distributional assumptions, and particularly for general isotropic log-concave measures.

Summary

We haven't generated a summary for this paper yet.