Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metropolitan-scale COVID-19 outbreaks: how similar are they? (2004.01248v2)

Published 2 Apr 2020 in q-bio.PE and physics.soc-ph

Abstract: In this study, we use US county-level COVID-19 case data from January 21-March 25, 2020 to study the exponential behavior of case growth at the metropolitan scale. In particular, we assume that all localized outbreaks are in an early stage (either undergoing exponential growth in the number of cases, or are effectively contained) and compare the explanatory performance of different simple exponential and linear growth models for different metropolitan areas. While we find no relationship between city size and exponential growth rate (directly related to $R0$, which denotes average the number of cases an infected individual infects), we do find that larger cities seem to begin exponential spreading earlier and are thus in a more advanced stage of the pandemic at the time of submission. We also use more recent data to compute prediction errors given our models, and find that in many cities, exponential growth models trained on data before March 26 are poor predictors for case numbers in this more recent period (March 26-30), likely indicating a reduction in the number of new cases facilitated through social distancing.

Summary

We haven't generated a summary for this paper yet.