Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending the average spectrum method: Grid points sampling and density averaging (2004.01155v1)

Published 2 Apr 2020 in physics.comp-ph, cond-mat.str-el, and quant-ph

Abstract: Analytic continuation of imaginary time or frequency data to the real axis is a crucial step in extracting dynamical properties from quantum Monte Carlo simulations. The average spectrum method provides an elegant solution by integrating over all non-negative spectra weighted by how well they fit the data. In a paper, we found that discretizing the functional integral as in Feynman's path-integrals, does not have a well-defined continuum limit. Instead, the limit depends on the discretization grid whose choice may strongly bias the results. In this paper, we demonstrate that sampling the grid points, instead of keeping them fixed, also changes the functional integral limit and rather helps to overcome the bias considerably. We provide an efficient algorithm for doing the sampling and show how the density of the grid points acts now as a default model with a significantly reduced biasing effect. The remaining bias depends mainly on the width of the grid density, so we go one step further and average also over densities of different widths. For a certain class of densities, including Gaussian and exponential ones, this width averaging can be done analytically, eliminating the need to specify this parameter without introducing any computational overhead.

Citations (15)

Summary

We haven't generated a summary for this paper yet.