Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stopping explosion by penalising transmission to hubs in scale-free spatial random graphs (2004.01149v1)

Published 2 Apr 2020 in math.PR, cs.SI, math.CO, and q-bio.PE

Abstract: We study the spread of information in finite and infinite inhomogeneous spatial random graphs. We assume that each edge has a transmission cost that is a product of an i.i.d. random variable L and a penalty factor: edges between vertices of expected degrees w_1 and w_2 are penalised by a factor of (w_1w_2)\mu for all \mu >0. We study this process for scale-free percolation, for (finite and infinite) Geometric Inhomogeneous Random Graphs, and for Hyperbolic Random Graphs, all with power law degree distributions with exponent \tau > 1. For \tau < 3, we find a threshold behaviour, depending on how fast the cumulative distribution function of L decays at zero. If it decays at most polynomially with exponent smaller than (3-\tau)/(2\mu) then explosion happens, i.e., with positive probability we can reach infinitely many vertices with finite cost (for the infinite models), or reach a linear fraction of all vertices with bounded costs (for the finite models). On the other hand, if the cdf of L decays at zero at least polynomially with exponent larger than (3-\tau)/(2\mu), then no explosion happens. This behaviour is arguably a better representation of information spreading processes in social networks than the case without penalising factor, in which explosion always happens unless the cdf of L is doubly exponentially flat around zero. Finally, we extend the results to other penalty functions, including arbitrary polynomials in w_1 and w_2. In some cases the interesting phenomenon occurs that the model changes behaviour (from explosive to conservative and vice versa) when we reverse the role of w_1 and w_2. Intuitively, this could corresponds to reversing the flow of information: gathering information might take much longer than sending it out.

Citations (7)

Summary

We haven't generated a summary for this paper yet.