Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Kernel Multi-view Discriminant Analysis (2004.01143v1)

Published 2 Apr 2020 in stat.ML and cs.LG

Abstract: In many artificial intelligence and computer vision systems, the same object can be observed at distinct viewpoints or by diverse sensors, which raises the challenges for recognizing objects from different, even heterogeneous views. Multi-view discriminant analysis (MvDA) is an effective multi-view subspace learning method, which finds a discriminant common subspace by jointly learning multiple view-specific linear projections for object recognition from multiple views, in a non-pairwise way. In this paper, we propose the kernel version of multi-view discriminant analysis, called kernel multi-view discriminant analysis (KMvDA). To overcome the well-known computational bottleneck of kernel methods, we also study the performance of using random Fourier features (RFF) to approximate Gaussian kernels in KMvDA, for large scale learning. Theoretical analysis on stability of this approximation is developed. We also conduct experiments on several popular multi-view datasets to illustrate the effectiveness of our proposed strategy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.