Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlocal biased random walks and fractional transport on directed networks (2004.00575v2)

Published 1 Apr 2020 in cond-mat.stat-mech

Abstract: In this paper, we study nonlocal random walk strategies generated with the fractional Laplacian matrix of directed networks. We present a general approach to analyzing these strategies by defining the dynamics as a discrete-time Markovian process with transition probabilities between nodes expressed in terms of powers of the Laplacian matrix. We analyze the elements of the transition matrices and their respective eigenvalues and eigenvectors, the mean first passage times and global times to characterize the random walk strategies. We apply this approach to the study of particular local and nonlocal ergodic random walks on different directed networks; we explore circulant networks, the biased transport on rings and the dynamics on random networks. We study the efficiency of a fractional random walker with bias on these structures. Effects of ergodicity loss which occur when a directed network is not any more strongly connected are also discussed.

Summary

We haven't generated a summary for this paper yet.