Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An attempt of proof of Riemann Hypothesis (2004.00460v2)

Published 31 Mar 2020 in math.GM

Abstract: This paper deals with an attempt of proof of the Riemann Hypothesis (RH). Let $T>10{10}$ arbitrarily large. Let the region $\Omega_T=\Big{z=x+i y\ \Big|\ \frac{1}{2}<x\<1, \ 0<y<T\Big\}.$ There is a finite number $N_T$ of roots of $\zeta(z)$ in $\Omega_T$. The aim of the paper is to prove that $N_T=0$. Suppose that $N_T\>0$. There exists at least one root $\rho=\frac{1}{2}+{\bf u}+i\gamma $ whose real part is greater or equal to the real part of all the other roots in $\Omega_T$. Let $v\geq \frac{3}{2}$. Let $\varepsilon>0$ arbitrarily small. We prove that $f(z)=\frac{\zeta'(z)}{\zeta(z)}$ is analytic in the open disk $\Omega_\varepsilon=\Big{ \Big|z-\Big(\rho+\frac{\varepsilon}{2}+v\Big)\Big|\Big}< v.$ Let $s=\rho+\varepsilon$. We prove, from the Taylor series of $\zeta(s)$, that $f(s)\sim \frac{1}{\varepsilon}\rightarrow \infty$ when $\varepsilon\rightarrow 0$, and that, through the representation of $f(s)$ as a Taylor series, $f(s)=f(c_0)-(v-\frac{\varepsilon}{2})f'(c_0) +\frac{(v-\frac{\varepsilon}{2})2}{2!}f''(c_0)-\frac{(v-\frac{\varepsilon}{2})3}{3!}f{(3)}(c_0)+\dots\mbox{\ for\ }c_0=\rho+\frac{\varepsilon}{2}+v,$ in $\Omega_\varepsilon$, that $f(s)\not\rightarrow \infty$ when $\varepsilon\rightarrow 0$, a contradiction which allows us to prove RH.

Summary

We haven't generated a summary for this paper yet.