Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Algorithms for Statistical Verification of Cyber-Physical Systems (2004.00275v2)

Published 1 Apr 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Statistical model checking is a class of sequential algorithms that can verify specifications of interest on an ensemble of cyber-physical systems (e.g., whether 99% of cars from a batch meet a requirement on their energy efficiency). These algorithms infer the probability that given specifications are satisfied by the systems with provable statistical guarantees by drawing sufficient numbers of independent and identically distributed samples. During the process of statistical model checking, the values of the samples (e.g., a user's car energy efficiency) may be inferred by intruders, causing privacy concerns in consumer-level applications (e.g., automobiles and medical devices). This paper addresses the privacy of statistical model checking algorithms from the point of view of differential privacy. These algorithms are sequential, drawing samples until a condition on their values is met. We show that revealing the number of the samples drawn can violate privacy. We also show that the standard exponential mechanism that randomizes the output of an algorithm to achieve differential privacy fails to do so in the context of sequential algorithms. Instead, we relax the conservative requirement in differential privacy that the sensitivity of the output of the algorithm should be bounded to any perturbation for any data set. We propose a new notion of differential privacy which we call expected differential privacy. Then, we propose a novel expected sensitivity analysis for the sequential algorithm and proposed a corresponding exponential mechanism that randomizes the termination time to achieve the expected differential privacy. We apply the proposed mechanism to statistical model checking algorithms to preserve the privacy of the samples they draw. The utility of the proposed algorithm is demonstrated in a case study.

Citations (4)

Summary

We haven't generated a summary for this paper yet.