Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonconvex Consensus ADMM for Cooperative Lane Change Maneuvers of Connected Automated Vehicles (2003.14199v2)

Published 31 Mar 2020 in math.OC, cs.SY, and eess.SY

Abstract: Connected and automated vehicles (CAVs) offer huge potential to improve the performance of automated vehicles (AVs) without communication capabilities, especially in situations when the vehicles (or agents) need to be cooperative to accomplish their maneuver. Lane change maneuvers in dense traffic, e.g., are very challenging for non-connected AVs. To alleviate this problem, we propose a holistic distributed lane change control scheme for CAVs which relies on vehicle-to-vehicle communication. The originally centralized optimal control problem is embedded into a consensus-based Alternating Direction Method of Multipliers framework to solve it in a distributed receding horizon fashion. Although agent dynamics render the underlying optimal control problem nonconvex, we propose a problem reformulation that allows to derive convergence guarantees. In the distributed setting, every agent needs to solve a nonlinear program (NLP) locally. To obtain a real-time solution of the local NLPs, we utilize the optimization engine OpEn which implements the proximal averaged Newton method for optimal control (PANOC). Simulation results prove the efficacy and real-time capability of our approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.