Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp local well-posedness for quasilinear wave equations with spherical symmetry (2003.13592v2)

Published 30 Mar 2020 in math.AP and math.CA

Abstract: In this paper, we prove a sharp local well-posedness result for spherically symmetric solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three or higher. Our approach is based on Morawetz type local energy estimates with fractional regularity for linear wave equations with variable $C1$ coefficients, which rely on multiplier method, weighted Littlewood-Paley theory, duality and interpolation. Together with weighted linear and nonlinear estimates (including weighted trace estimates, Hardy's inequality, fractional chain rule and fractional Leibniz rule) which are adapted for the problem, the well-posed result is proved by iteration. In addition, our argument yields almost global existence for $n=3$ and global existence for $n\ge 4$, when the initial data are small, spherically symmetric with almost critical Sobolev regularity.

Summary

We haven't generated a summary for this paper yet.