Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BVI-DVC: A Training Database for Deep Video Compression (2003.13552v2)

Published 30 Mar 2020 in eess.IV and cs.CV

Abstract: Deep learning methods are increasingly being applied in the optimisation of video compression algorithms and can achieve significantly enhanced coding gains, compared to conventional approaches. Such approaches often employ Convolutional Neural Networks (CNNs) which are trained on databases with relatively limited content coverage. In this paper, a new extensive and representative video database, BVI-DVC, is presented for training CNN-based video compression systems, with specific emphasis on machine learning tools that enhance conventional coding architectures, including spatial resolution and bit depth up-sampling, post-processing and in-loop filtering. BVI-DVC contains 800 sequences at various spatial resolutions from 270p to 2160p and has been evaluated on ten existing network architectures for four different coding tools. Experimental results show that this database produces significant improvements in terms of coding gains over three existing (commonly used) image/video training databases under the same training and evaluation configurations. The overall additional coding improvements by using the proposed database for all tested coding modules and CNN architectures are up to 10.3% based on the assessment of PSNR and 8.1% based on VMAF.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Di Ma (27 papers)
  2. Fan Zhang (686 papers)
  3. David R. Bull (16 papers)
Citations (136)

Summary

We haven't generated a summary for this paper yet.