Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Incremental Clustering Technique with Concept Drift Detection (2003.13225v1)

Published 30 Mar 2020 in cs.LG and stat.ML

Abstract: Data are being collected from various aspects of life. These data can often arrive in chunks/batches. Traditional static clustering algorithms are not suitable for dynamic datasets, i.e., when data arrive in streams of chunks/batches. If we apply a conventional clustering technique over the combined dataset, then every time a new batch of data comes, the process can be slow and wasteful. Moreover, it can be challenging to store the combined dataset in memory due to its ever-increasing size. As a result, various incremental clustering techniques have been proposed. These techniques need to efficiently update the current clustering result whenever a new batch arrives, to adapt the current clustering result/solution with the latest data. These techniques also need the ability to detect concept drifts when the clustering pattern of a new batch is significantly different from older batches. Sometimes, clustering patterns may drift temporarily in a single batch while the next batches do not exhibit the drift. Therefore, incremental clustering techniques need the ability to detect a temporary drift and sustained drift. In this paper, we propose an efficient incremental clustering algorithm called UIClust. It is designed to cluster streams of data chunks, even when there are temporary or sustained concept drifts. We evaluate the performance of UIClust by comparing it with a recently published, high-quality incremental clustering algorithm. We use real and synthetic datasets. We compare the results by using well-known clustering evaluation criteria: entropy, sum of squared errors (SSE), and execution time. Our results show that UIClust outperforms the existing technique in all our experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.