Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preserving self-similarity in free products of semigroups (2003.12810v3)

Published 28 Mar 2020 in math.GR and cs.FL

Abstract: We improve on earlier results on the closure under free products of the class of automaton semigroups. We consider partial automata and show that the free product of two self-similar semigroups (or automaton semigroups) is self-similar (an automaton semigroup) if there is a homomorphism from one of the base semigroups to the other. The construction used is computable and yields further consequences. One of them is that we can adjoin a free generator to any self-similar semigroup (or automaton semigroup) and preserve the property of self-similarity (or being an automaton semigroup). The existence of a homomorphism between two semigroups is a very lax requirement; in particular, it is satisfied if one of the semigroups contains an idempotent. To explore the limits of this requirement, we show that no simple or $0$-simple idempotent-free semigroup is a finitely generated self-similar semigroup (or an automaton semigroup). Furthermore, we give an example of a pair of residually finite semigroups without a homomorphism from one to the other.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Tara Brough. Automaton semigroup free products revisited. arXiv pre-print, 2020. URL: https://arxiv.org/abs/2003.12810v1.
  2. Automaton semigroup constructions. Semigroup Forum, 90(3):763–774, 2015. doi:10.1007/s00233-014-9632-x.
  3. Automaton semigroups: New constructions results and examples of non-automaton semigroups. Theoretical Computer Science, 674:1–15, 2017. doi:10.1016/j.tcs.2017.02.003.
  4. Alan J. Cain. Automaton semigroups. Theoretical Computer Science, 410(47):5022–5038, 2009. doi:10.1016/j.tcs.2009.07.054.
  5. On the complexity of the word problem for automaton semigroups and automaton groups. Advances in Applied Mathematics, 90:160 – 187, 2017. doi:10.1016/j.aam.2017.05.008.
  6. Automaton semigroups and groups: On the undecidability of problems related to freeness and finiteness. Israel Journal of Mathematics, 237:15–52, 2020. doi:10.1007/s11856-020-1972-5.
  7. The freeness problem for automaton semigroups. arXiv pre-print, 2024. doi:10.48550/arXiv.2402.01372.
  8. On the structure theory of partial automaton semigroups. Semigroup Forum, 101:51–76, 2020. doi:10.1007/s00233-020-10114-5.
  9. Pierre Gillibert. The finiteness problem for automaton semigroups is undecidable. International Journal of Algebra and Computation, 24(01):1–9, 2014. doi:10.1142/S0218196714500015.
  10. John M. Howie. Fundamentals of Semigroup Theory. London Mathematical Society Monographs. Clarendon Press, 1995.
  11. Peter R. Jones. Analogues of the bicyclic semigroup in simple semigroups without idempotents. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 106(1-2):11–24, 1987. doi:10.1017/S0308210500018163.
  12. Mark V. Lawson. Finite automata. Chapman and Hall/CRC, 2004.
  13. Peter Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett Publishers, Inc., 5th edition, 2011.
  14. Inverse semigroups of partial automaton permutations. International Journal of Algebra and Computation, 20(07):923–952, 2010. doi:10.1142/S0218196710005960.
  15. The self-similarity of free semigroups and groups. In Munehiro Iwami, editor, Logic, Algebraic system, Language and Related Areas in Computer Science, volume 2229 of RIMS Kôkyûroku, pages 11–20. Research Institute for Mathematical Sciences, Kyoto University, 2022. doi:10.48550/arXiv.2205.10248.
  16. Automata generating free products of groups of order 2. Journal of Algebra, 336(1):53–66, 2011. doi:10.1016/j.jalgebra.2011.02.049.
  17. Automata over a binary alphabet generating free groups of even rank. International Journal of Algebra and Computation, 21(01n02):329–354, 2011. doi:10.1142/S0218196711006194.
  18. On a series of finite automata defining free transformation groups. Groups, Geometry, and Dynamics, 4:337–405, 2010. doi:10.4171/GGD/87.
  19. Janette Welker. Constructions and closure properties for partial and complete automaton structures. Bachelor thesis, Universität Stuttgart, 2019. doi:10.18419/opus-10709.
  20. Jan Philipp Wächter. Automaton Structures – Decision Problems and Structure Theory. Doctoral thesis, Universität Stuttgart, 2020. doi:10.18419/opus-11267.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com