Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Federated Learning (2003.12795v1)

Published 28 Mar 2020 in cs.LG and stat.ML

Abstract: Federated learning (FL) enables massive distributed Information and Communication Technology (ICT) devices to learn a global consensus model without any participants revealing their own data to the central server. However, the practicality, communication expense and non-independent and identical distribution (Non-IID) data challenges in FL still need to be concerned. In this work, we propose the Semi-Federated Learning (Semi-FL) which differs from the FL in two aspects, local clients clustering and in-cluster training. A sequential training manner is designed for our in-cluster training in this paper which enables the neighboring clients to share their learning models. The proposed Semi-FL can be easily applied to future mobile communication networks and require less up-link transmission bandwidth. Numerical experiments validate the feasibility, learning performance and the robustness to Non-IID data of the proposed Semi-FL. The Semi-FL extends the existing potentials of FL.

Citations (17)

Summary

We haven't generated a summary for this paper yet.