Bounded State Estimation over Finite-State Channels: Relating Topological Entropy and Zero-Error Capacity
Abstract: We investigate state estimation of linear systems over channels having a finite state not known by the transmitter or receiver. We show that similar to memoryless channels, zero-error capacity is the right figure of merit for achieving bounded estimation errors. We then consider finite-state, worst-case versions of the common erasure and additive noise channels models, in which the noise is governed by a finite-state machine without any statistical structure. Upper and lower bounds on their zero-error capacities are derived, revealing a connection with the {\em topological entropy} of the channel dynamics. Separate necessary and sufficient conditions for bounded linear state estimation errors via such channels are obtained. These estimation conditions bring together the topological entropies of the linear system and the discrete channel.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.