Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Grouping Model for Unified Perceptual Parsing (2003.11647v1)

Published 25 Mar 2020 in cs.CV

Abstract: The perceptual-based grouping process produces a hierarchical and compositional image representation that helps both human and machine vision systems recognize heterogeneous visual concepts. Examples can be found in the classical hierarchical superpixel segmentation or image parsing works. However, the grouping process is largely overlooked in modern CNN-based image segmentation networks due to many challenges, including the inherent incompatibility between the grid-shaped CNN feature map and the irregular-shaped perceptual grouping hierarchy. Overcoming these challenges, we propose a deep grouping model (DGM) that tightly marries the two types of representations and defines a bottom-up and a top-down process for feature exchanging. When evaluating the model on the recent Broden+ dataset for the unified perceptual parsing task, it achieves state-of-the-art results while having a small computational overhead compared to other contextual-based segmentation models. Furthermore, the DGM has better interpretability compared with modern CNN methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhiheng Li (67 papers)
  2. Wenxuan Bao (14 papers)
  3. Jiayang Zheng (1 paper)
  4. Chenliang Xu (114 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.