Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream Tasks (2003.11645v3)

Published 23 Mar 2020 in cs.CL, cs.LG, and stat.ML

Abstract: Word2Vec is a prominent model for NLP tasks. Similar inspiration is found in distributed embeddings for new state-of-the-art (SotA) deep neural networks. However, wrong combination of hyper-parameters can produce poor quality vectors. The objective of this work is to empirically show optimal combination of hyper-parameters exists and evaluate various combinations. We compare them with the released, pre-trained original word2vec model. Both intrinsic and extrinsic (downstream) evaluations, including named entity recognition (NER) and sentiment analysis (SA) were carried out. The downstream tasks reveal that the best model is usually task-specific, high analogy scores don't necessarily correlate positively with F1 scores and the same applies to focus on data alone. Increasing vector dimension size after a point leads to poor quality or performance. If ethical considerations to save time, energy and the environment are made, then reasonably smaller corpora may do just as well or even better in some cases. Besides, using a small corpus, we obtain better human-assigned WordSim scores, corresponding Spearman correlation and better downstream performances (with significance tests) compared to the original model, trained on 100 billion-word corpus.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tosin P. Adewumi (6 papers)
  2. Foteini Liwicki (16 papers)
  3. Marcus Liwicki (86 papers)
Citations (18)