Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Similarity of Neural Networks with Gradients (2003.11498v1)

Published 25 Mar 2020 in cs.LG and stat.ML

Abstract: A suitable similarity index for comparing learnt neural networks plays an important role in understanding the behaviour of the highly-nonlinear functions, and can provide insights on further theoretical analysis and empirical studies. We define two key steps when comparing models: firstly, the representation abstracted from the learnt model, where we propose to leverage both feature vectors and gradient ones (which are largely ignored in prior work) into designing the representation of a neural network. Secondly, we define the employed similarity index which gives desired invariance properties, and we facilitate the chosen ones with sketching techniques for comparing various datasets efficiently. Empirically, we show that the proposed approach provides a state-of-the-art method for computing similarity of neural networks that are trained independently on different datasets and the tasks defined by the datasets.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.